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1. Introduction

This Progress Report covers the six month period from October 23, 1991 to April 23,

1992. The completed work during this period is contained in a Ph.D. dissertation of J. Q. Pan

and two papers. These are summarized below. Work continues on frequency analysis for

transfer function identification, and a new study has been initiated into a "weighted" least

squares algorithm within the context of the Fourier modulating function approach. Progress in

each of these areas is summarized below. In addition, the first phase of applying these tech-

niques to the F-18 flight data is nearing completion, and these results will also be summarized
below.

2. List of Scientific Collaborators: October 23, 1991 to April 23, 1992:

J. Q. Pan Graduate Student Research Assistant

A. A. Pandiscio Raytheon Graduate Student Fellow

A. E. Pearson* Professor and Principal Investigator
Y. Shen* Graduate Student Research Assistant

*Received partial support under NAG- 1-1065.

3. Completed and Continuing Research

3.1. Pan's Ph.D. Dissertation

As implied by the title: System Identification, Model Reduction and Deconvolution Filter-

ing Using Fourier Based Modulating Signals and High Order Statistics, J. Q. Pan's Ph.D.

dissertation [1] covers a fairly wide range of topics. Some of the results in this thesis have

already been summarized in previous reports, and we shall only outline the results here.

Thus, Chapter 2 entitled "Input Persistent Excitation and Model Structure Estimation" was

discussed in Section 3.2 of Semiannual Progress Report No. 2, and the contents were

presented in a short paper entitled "On Order Determination for Linear Differential Scalar

Systems" for the 1991 CISS, Johns Hopkins Univ., Baltimore, MD, in March 1991. Parts of

Chapter 3 entitled "Frequency Analysis Using Short Time Transient Data" have been dis-

cussed in Sections 3.4, 3.2 and 3.3 of Semiannual Progress Reports No's. 2, 3 and 4 respec-

tively, 1 and abbreviated contents were presented in the short paper [2] entitled "Frequency

Analysis Via the Method of Moment Functionals" for the 1991 IEEE CDC, Brighton, UK, in

December 1991. 2 Chapter 4 entitled "Schemes for Model Reduction and Parameter

Identification in the Frequency Domain" is an application to model reduction of our formula-

tion for frequency analysis (Chapter 3) using the Fourier modulating function approach. Two

I Specifically, that part which deals with single input-single output (SISO) systems. We have

since dealt with the MIMO case (see Section 3.7 of [1]), and this will be included in a full-length pa-

per to be written in the near future.

2 Three preprint copies each of the 1991 CISS and 1991 IEEE CDC papers were mailed to P. C.

Murphy on September 13, 1991, along with three copies of the paper entitled "Explicit Least Squares

System Parameter Identification for Exact Differential Input/Output Models" which is scheduled to ap-

pear in the Proc. of the Eighth ICMCM, Pergamon Press, May 1992.
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sixth order examplesare presentedusing our method, and these are comparedwith the
reducedorder modelsobtainedvia two other techniques.We plan to preparea paper on this

chapter after completing a paper on the frequency analysis results. Chapter 5 entitled "High

Resolution Frequency Estimation in the Presence of Noise Using Complex Sinusoidal Modu-

lating Signals" involves the classic problem of estimating the frequencies of superimposed

sinusoids corrupted by white Gaussian noise. This study was briefly mentioned in Section 3.3

of Semiannual Progress Report No. 4 and was presented as a short paper [3] at the recent

1992 CISS, Princeton Univ., Princeton, NJ, in March 1992. The presentation evoked several

inquiries of interest apparently because of its newness to the signal processing audience and

the favorable simulation results of this method in comparison with the well-known Yule-

Walker equation approach. A full length version of this paper has been submitted for publica-

tion to the IEEE Trans. on Signal Processing. Chapter 6 entitled "Deconvolution and Param-

eter Identification for Noncausai Nonminimum Phase ARMA Systems Using Inverse Cumu-

lants" deals with noncausal discrete-time ARMA models driven by non-Gaussian random

inputs possessing nonzero third and fourth order cumulants.

3.2. Weighted Least Squares and Comparison With Other Techniques

We have begun to examine various ways to ameliorate the deleterious effects of noise

beyond that which is obtained by our deterministic least squares setting of the Fourier based

modulating function technique. We have found that a "weighted" least squares approach

seems to hold significant promise, at least for linear system models. To describe these results,

consider the SISO linear system model:

A(p)y(t) = B(p)u(t) + e(t), O,A_t<T (1)

where (A (p),B (p)) are differential operators, i.e., polynomials in p _/dt, of a priori order n,

and e (t) represents the effect of modeling errors. Thus far we have considered the weighting

situation only for the parametric identification problem, i.e., estimating the coefficients in

(A (p),Bfp)) given the i/o data [u (t ),y (t )] on [0,T], but we shall eventually investigate

extending the approach to the nonparametric problem as well, i.e., estimating the frequency

function H (i to)=B (i to)/A (i to) given transient i/o data on several intervals [tr,tr+T],

r=l,2 • • N.

To encompass stochastic models, a first question might be: What is the effect of the

modulation process on a continuous-time "white noise" process? To answer this, let us refer

to the complex form of the Fourier modulating functions of order n which were defined by

Eqs. (2) and (3) in Semiannual Progress Report No. 4, i.e.,

¢p,,,(t ) = e-imt°C (e-i°_-l )", O_ _'T = 2n/¢o 0 (2)

and its equivalent representation (which follows from the binomial expansion) given by

_,(t) =e -/'n_ _(-I) n-' [_]e -acct. (3)
k=0

In the above, i--4"Z]--1,m is any integer which we shall refer to as the 'modulating frequency

index', ¢%=2_lT plays the role of a "resolving" frequency, and n corresponds to the order of

the differential operator model under investigation. Defining a column vector

O = col[-a I, • •--an,b1,'' b,t], and applying the Modulation Property, which is embodied in
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Eq. (4) of Semiannual Progress Report No. 4, the modulated version of the model (I) can be

put into the (complex valued) linear regression equation format:

'y_'(m) : _m)O + _(m), m--O,1,2. • (4)

where the row vector of regressors _m ) is defined by

) = row[y?(m),. •  q(m ),y/'(m), • • y (m )1 (5)

and the (y_(m), y](rn )) are defined by 3

TjU(rn) = An (ira 0_o)n-j U (m ), T]Crn) = An (ira O_o)"-j Y (rn ). (6)

The residuals for (4) are given by

T

e.(m ) = _e (t )¢,n (t )dt. (7)
0

If we assume that the modeling error function e(t) in (1) is a zero mean Gaussian sta-

tionary white noise process with covariance Ee (t )e (t +x)=af(x) then the question posed at the

start of the previous paragraph has a nice closed-form answer in that the covafiance of the

residuals e(m ) defined in (7) is found to be given by

__(_l)t (2n),
(n-l)l(n +I)! ' -n <-/__n (8)

Ee(m)e(m+l) = 0 for all I such that I I I>n .

If the residuals in the time domain were indeed white, then weighting the frequency domain

residuals e(m) by the inverse of the Toeplitz matrix W deduced from (8), i.e., for all frequen-

cies m =0,1 • • M,

['(1) t (2n)!

{-
{W),,,.,,,+z = [. 0 for all 1 such that It [>n

(9)

would lead to a Gauss-Markov estimate. Although we cannot achieve the minimum variance

of a Gauss-Markov estimate, due to the statistical dependence of the regressors on the noise

• (t), weighting by the inverse of W seems reasonable for a first attempt at reducing the vari-

ance when the measurement noises are white. Employing this weighting and taking into

account both the real and imaginary parts of the regressors, the cost function takes the form

J = (Yc -re o)'w_l(Yc -re 0) (10)

where the following notation applies:

F c' = [ Re (_0), • • _M) ), Im (_0), • • "/(M) ) ] (11)

Yc'= [ Re (Yd_(0),"" Yd'(M) ), Im (Yd_(0),"" yd'(M) ) ] (12)

with (_(m), Yt_(m) ) defined in (5) and (6), and the composite weighting matrix W c is defined

3 Refer to Eq. (4), also Fig. 1, of the Semiannual Progress Report No. 4 for further details, includ-

ing the display of the n th order finite difference operator A n .
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by

(13)

The one-shot parameter estimate which minimizes (10) is given by

Owls = (Fc'wclFc )-lYe "wclYc • (14)

The ordinary least squares estimate (the one we have been working with up till now) is

obtained from (14) by setting We=l, i.e.,

-1 t

Shen has compared these two estimates in Monte Carlo simulations for a second order system

with white measurement noises (to be summarized below) and indeed the variance of the

parameter estimates is reduced in using (14) in relation to (15).

In addition, we are experimenting with an "adaptive" weighting matrix algorithm, which

uses the inverse of W c as a first guess, in an effort to achieve a 'generalized' least squares

estimate, thereby further reducing the variance. In this case, the estimate is obtained itera-

tively by solving for a vector-symmetric matrix pair (O,_,_,W_l s) in a pair of vector-man-ix

equations which have the following form:

§awls = (Fc "W_lsFc )-tFc "W_ts rc (16)

w,..,t, = g (0a_L,) (17)

where the function g (0a_ts) is the covariance of the residuals as calculated from the model

relative to the current estimate of the parameters, Oa,,ts, while assuming white independent

measurement noises on both the input and output signals for this calculation. The standard

relaxation algorithm for solving this nonlinear pair is to first guess Wa_ts=Wc in (16) in order

to obtain a first guess for 0awts, substitute this value into the RHS of (17), thus obtaining a

new value for W_t s, which is reinserted into the RHS of (16) to obtain the next value for

Oa,,ts, etc. 4 This algorithm works quite well with a suitable stopping rule based upon a

chosen threshold for change in the estimate of t}awts. Convergence has usually been obtained

in five to ten iterations for our applications.

To compare the above least squares formulations, consider the second order system

ji(t)+3); (t)+By (t)=5u (t), 0<_t ST, which possesses the transfer function

5
H (s) =

$2+3s +8

with the output y (t) corrupted by additive white Gaussian measurement noise. Two hundred

Monte Carlo runs were made for each of several noise-to-signal ratios. The input was

4 In keeping with the property from (9) that W and hence W c is bandlimited to n nonzero values

on either side of the main diagonal, these iterations are carried out with Wa_ts also bandlimited to n

nonzero values off the main diagonal, where n is the order of the model under consideration.
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u (t)=sint2/5 over a T=10s time interval for each run. The initial conditions were randomized

for each run, and the [0,T] time interval was discretized into 256 subintervals so that a stan-

dard 256=2 s point DFT/FFT could be used in calculating the Fourier series coefficients of the

i/o data for the least squares problert_s. 5 The results are shown in Figs. 1, 2 and 3 for the

respective estimates, i.e., Fig.(1) for 0ts, Fig. 2 for 0wt=, and Fig. 3 for 0awts. Each figure

shows the estimates for the three parameters against the ideal values: 01=8, 02=3 and 03=5,

as a function of the RMS noise intensity relative to the uncorrupted signal. The mean and

standard deviations are shown for each parameter estimate based upon the 200 Monte Carlo

runs at each noise intensity. In terms of variance, there is a roughly 3 fold decrease in com-

paring the variance estimate based on 0is verses 0a_ts, with the variance for 8wts being some-

what between 0ts and 0a_ts. The bias is also smaller for 0_ts than that for either 0wts or 01=,

and takes on significant values only at high noise levels. A more dramatic comparison is

shown in Fig. 4 where the algorithm used was the popular Prediction Error Method (PEM)

from the Identification Toolbox by L. Ljung in MATLAB. The superiority of the modulating

function technique (MFT) is unmistakable in comparing Fig. 4 with Figs. 1-3. A major rea-

son for this is that the MFT does not have to estimate unknown initial conditions. Another

reason is due to the fact that the MFT is a direct identification technique for continuous-time

models, while the PEM first estimates the parameters for a discrete-time model then converts

this to a continuous-time model. Even with the initial conditions fixed at zero and giving the

PEM the correct initial state for each run, the MFT algorithm still gave better results (figures

omitted) though the comparisons are less dramatic in this case. Moreover, the MFT required

less computer time for each set of Monte Carlo runs (about a five to ten fold decrease depend-

ing on whether the PEM had to estimate the initial conditions or not).

5 The formula used for these calculations is based on Simpson's rule and is given by Eq. (19)

below.
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3.3. Modeling the F-18: Phase One Results for Longitudinal Flight

We have begun to model the F-18 aircraft dynamics based upon information communi-
cated to us from Drs. Vlad Klein and Gene MoreUi. Yah Shen is assisting in this project.

Our initial investigation has focused on the parameter identification problem for the longitudi-

nal dynamics using SISO linear differential operator models of the form represented in (1). In

seeking to find the best model within this class, we have to determine the orders of the poly-

nomials A (p) and B (p) as well as their coefficient values. We were given 40.96s of data

sampled at 50 Hz which means a total of 2250 samples for each signal. Since our algorithms

use DFT/FFT techniques to calculate Fourier series coefficients, we truncated the data to 2048

= 211 samples in order to utilize a standard length FFT. The 202 extra data points allowed us

to test the sensitivity of the model to shifts in the data sequence. To be specific about the

approximations involved, if z (t) is any of the available signals sampled every 8t=.O2s on

[0,T] with samples zj=z(jSt), j--0,1..N, N=T/St, then the needed Fourier series
coefficients Z(m), rn=O,1 .. M were calculated using Simpson's rule, the accuracy of which

is of order (8t)4 :

_z(t)e_imool 28t [.z02z N N_I N_2 ]dt - "_ + 2zj w_J + , m0 j=l,3 -- j=2,4..zJw_l =0,1 .. M (18)

where wu=e -izr_N. Since N is a power of 2, the above sequence of Fourier series

coefficients is represented in row-vector form by the first M+I components of the standard

FFT for the sequence inside the brackets on the RHS of (18):

An inspection of the various signal spectra reveals that the bandwidth of the models will

be on the order of 1 Hz or less. Since the resolving frequency is bounded below by the

length of the available data, i.e., f_l/T=.024414 Hz or oo=0.15340 rad/sec, this implies that

the number M of modulating functions should be on the order of M =30 or 40, else too much

noise will be allowed into the least squares regression. This is based on the fact that the

highest frequency extracted from the data by the modulating functions is MfoHz, so we

impose the constraint: Mf0=l Hz. Notice that this implies a usage of only the lower 2% of

the available harmonic frequencies in (19) since N=2048. 6

The longitudinal motion control diagram is shown in Fig. 5 along with the transfer func-

tions of our best models based on the available signals. The Bode plots and impulse

responses of the best models are shown in Figs. 6 and 7 for each of the transfer functions.

The time domain performance of using these models to predict the outputs in comparison with

the physical signals is shown in Fig. 8.

6 The implementation of the n th order finite difference operator A n , which is needed in calculat-

ing the regressors (6), actually requires the first M+n harmonics of the Fourier series coefficients of

the data. Thus, it is the first M+n components of the FFT sequence (19) which is actually retained in

implementing the algorithm, where n is the order of the model under consideration.
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F-18 Longitudinal Motion Control Diagram

longitudinal

pilot stick deflection (in)

iETAH Hde I :] -_11 Hqd I

horizontal tail deflection DE (rad)-=I Had I

p'dch rate Q (rad/s)

angle of attack ALFAVG (rad)

models:

H= (s)=
-0.0489s 2- 0.0244So 0.0239

s 2+ 0.1335s + 1.2097

zeros:-0.2497+/-0.6533i

poles:-0.0668+/-1.0978i

H=(S)=
-1.3195s + 0.2457

s 2+ 0.2465S + 0.0458

zeros: 0.1862

poles: -0.1232+/-0.1750i

H=(S)=

-1.1515

S =+ 0.5834S + 0.1064

zeros: none

poles: -0.2916+/-0. t 461 i

Fig. 5 Block Diagram and the Best Estimated Linear Models
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Bode Plots of Longitudinal Dynamic Models

Bode plots of model between ETAH and DE

I , -60 t
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1
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i
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Fig. 6 Bode Plots for Hae (j"¢o), Hqd (j (t)) and Had (j co)
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In addition to the visual comparison, a quantitative measure of how well the models perform

is indicated on each graph as the "output signal-to-output error" ratio in decibels, which we

define by

RMS(_) e(t) = y(t) -_(t), O<_.t_<T (20)
S/E = 20 log10 RMS(e) '

where RMS0,) means the root-mean-square value of the output signal y(t) over the [0,T]

time interval, and _ (t) is the estimated output using the model. Since our algorithm does not

estimate initial conditions, we used a standard Luenberger observer running backwards in time

(details omitted here) in order to determine an initial condition for each model output _ (t)

when comparing the signals depicted in Fig. 8.

A test to determine the sensitivity of the above models to shifts in the [0,T] data sets is

shown in Fig. 9 for a 200 point-shift. (The shifts in the pole-zero plots are smaller for shorter

length point-shifts.) The scatter in the pole-zero plots reveal that the Hae(S) model is the

most sensitive of the three models in this regard.

As implied by the discussion in Section 3.2 above, we have been experimenting with two

variations on the standard least squares algorithm using the Fourier based Modulating Func-

tion Technique (MFT). The symbols "LS", "WLS" and "AWLS" are used to distinguish

respectively, the least squares estimates given by (15), (14) and (16)-(17). The models

obtained using these three algorithms are compared in Figs. 10, 11 and 12 for the three sub-

systems. In addition to the visual comparison, the S/E ratios show that the adaptive weighted

least squares algorithm is the best in each case.
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Validation of the modelswith respectto the ordersof the numerator and denominator

polynomials in the transfer functions is the object of the materials presented in the remaining

Figs. 13-22. The "AWLS" algorithm has been utilized for each of the models obtained in

these figures. Quantitative data comparing various models for each subsystem is summarized

in the "performance tables" of Figs. 13 and 14. As indicated in the tables, model orders up

to and including 5 were tested. In addition to the S/E ratios, the minimum values of the cri-

teflon function J (defined in (10)) is shown in these tables for each pole/zero pair, as well as

the stability property of the resulting model. Our best transfer functions summarized in Figs.

5-7 were based upon the data in these tables, though "best" is subject to some qualification.

For example, using the notation "(2,0)" to imply a model with 2 poles and 0 zeros, and

"(2,1)" a model with 2 poles and 1 zero, etc., the table for Hae (s) in Fig. 13 shows that the

(4,3), (4,4) and (5,4) models are each slightly better than the (2,2) model. However, the

difference is not deemed significant enough to justify the more complex model and, therefore,

the (2,2) model is offered as the best for Hae (s). A further study of the residuals for the

Hae (s) substem is discussed below.

An inspection of Figs. 13 and 14 also reveals that unstable models were obtained for

various structures, sometimes with quite respectable S/E ratios. Based upon the supposition

that a stable model is preferred, a modification of the AWLS algorithm was tested that forced

the model for the end result to be stable. 7 The performance tables for this "constrained"

AWLS algorithm are shown in Figs. 15 and 16. This did not change the conclusion for the

best models of Hae (s) or Hqa (s), but the conclusion for the Hag (s) is drawn into question by
comparing the (2,0) and (4,2) models. The Bode and impulse response functions for these

two models of Hag(s) are shown in Fig. 17 (also, the pole-zero plots). The differences are

clearly minuscule. However, the predicted outputs for these two Hag(s ) models is compared

with the physical angle of attack output at the bottom of Fig. 16. Here it is seen that there is

a noticeable improvement in the (4,2) model over the (2,0) model, but the advantage is prob-

ably not justified to warrant the additional complexity. Further comments regarding the resi-

duals for the Hag (s) models are given below.

A study of the residuals for various models of the three subsystems is contained in Figs.

18-22. The two top graphs in each figure show respectively, the time and frequency plots of

both the output signal and error signal e--y-)_. The bottom two graphs in each figure show

the modulated residuals (on the LHS), and their normalized covariance (autocorrelation) as a

function of the modulating frequency index (on the RHS). The Z 2 95% confidence limits for

judging whether residuals are white, or not, are drawn in dotted lines in the lower right hand

graph for each Fig. 18-22. Based upon this test, each of the models (more or less) can be

accepted as the "true" model. Again, simplicity weighs towards the lower order model when

two models satisfy this test as in the case of the H#, (s) and Hag (s) subsystems.

7 This was accomplishedduring the iterative solution of (16) and (17) by testing the stability of

the system for each iterate of 0a_,ts, then starting the iterations over again (if unstable) using as a start-

ing point the value of {)awts obtained by reflecting the unstable poles of the system about the imaginar3'

axis thereby creating a stable system.
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Performance table of model Hck
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Fig. 13 Performance Tables for Structure Determination of Hat (s) and Hqd (s)
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Performance table of model Had(S) under different structure assumpSons
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Fig. 14 Performance Table for Structure Determination of Had(S )
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Pedormance table of model Hde(S) under different structure assumptions
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Fig. 15 Modified Performance Tables for the Constrained AWLS Algorithm
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(2,0) model for ALFAVG-DE
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4. Future Research

We shall continue our investigations into modeling for the F-18 aircraft dynamics, focus-

ing on the lateral dynamics as the next phase. We shall also consider obtaining the frequency

transfer function models direcdy for this system using the theory put forth in [2], extended for

MIMO systems. One further point of interest relates to the model reduction problem, which

is the subject of Chapter 4 in Pan's thesis [1]. Shen has just rerun the two examples in Sec-

tion 4.5 of [1] and found that the AWLS (adaptive weighted least squares) algorithm appears

to give significantly better lower order approximations in the frequency domain than Pan's

results which, in turn, were better than the methods in the literature with which Pan compared

his algorithm. If this turns out to be generally true, then the weighted least squares formula-

don will have even broader utility than we anticipated.
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